Serveur d'exploration sur les récepteurs immunitaires végétaux

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A survey of TIR domain sequence and structure divergence.

Identifieur interne : 000222 ( Main/Exploration ); précédent : 000221; suivant : 000223

A survey of TIR domain sequence and structure divergence.

Auteurs : Vladimir Y. Toshchakov [États-Unis] ; Andrew F. Neuwald [États-Unis]

Source :

RBID : pubmed:32002590

Descripteurs français

English descriptors

Abstract

Toll-interleukin-1R resistance (TIR) domains are ubiquitously present in all forms of cellular life. They are most commonly found in signaling proteins, as units responsible for signal-dependent formation of protein complexes that enable amplification and spatial propagation of the signal. A less common function of TIR domains is their ability to catalyze nicotinamide adenine dinucleotide degradation. This survey analyzes 26,414 TIR domains, automatically classified based on group-specific sequence patterns presumably determining biological function, using a statistical approach termed Bayesian partitioning with pattern selection (BPPS). We examine these groups and patterns in the light of available structures and biochemical analyses. Proteins within each of thirteen eukaryotic groups (10 metazoans and 3 plants) typically appear to perform similar functions, whereas proteins within each prokaryotic group typically exhibit diverse domain architectures, suggesting divergent functions. Groups are often uniquely characterized by structural fold variations associated with group-specific sequence patterns and by herein identified sequence motifs defining TIR domain functional divergence. For example, BPPS identifies, in helices C and D of TIRAP and MyD88 orthologs, conserved surface-exposed residues apparently responsible for specificity of TIR domain interactions. In addition, BPPS clarifies the functional significance of the previously described Box 2 and Box 3 motifs, each of which is a part of a larger, group-specific block of conserved, intramolecularly interacting residues.

DOI: 10.1007/s00251-020-01157-7
PubMed: 32002590
PubMed Central: PMC7075850


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A survey of TIR domain sequence and structure divergence.</title>
<author>
<name sortKey="Toshchakov, Vladimir Y" sort="Toshchakov, Vladimir Y" uniqKey="Toshchakov V" first="Vladimir Y" last="Toshchakov">Vladimir Y. Toshchakov</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. vtoshchakov@som.umaryland.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201</wicri:regionArea>
<wicri:noRegion>21201</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Neuwald, Andrew F" sort="Neuwald, Andrew F" uniqKey="Neuwald A" first="Andrew F" last="Neuwald">Andrew F. Neuwald</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201</wicri:regionArea>
<wicri:noRegion>21201</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32002590</idno>
<idno type="pmid">32002590</idno>
<idno type="doi">10.1007/s00251-020-01157-7</idno>
<idno type="pmc">PMC7075850</idno>
<idno type="wicri:Area/Main/Corpus">000232</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000232</idno>
<idno type="wicri:Area/Main/Curation">000232</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000232</idno>
<idno type="wicri:Area/Main/Exploration">000232</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A survey of TIR domain sequence and structure divergence.</title>
<author>
<name sortKey="Toshchakov, Vladimir Y" sort="Toshchakov, Vladimir Y" uniqKey="Toshchakov V" first="Vladimir Y" last="Toshchakov">Vladimir Y. Toshchakov</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. vtoshchakov@som.umaryland.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201</wicri:regionArea>
<wicri:noRegion>21201</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Neuwald, Andrew F" sort="Neuwald, Andrew F" uniqKey="Neuwald A" first="Andrew F" last="Neuwald">Andrew F. Neuwald</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201</wicri:regionArea>
<wicri:noRegion>21201</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Immunogenetics</title>
<idno type="eISSN">1432-1211</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing (genetics)</term>
<term>Adaptor Proteins, Signal Transducing (metabolism)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Bayes Theorem (MeSH)</term>
<term>Databases, Genetic (MeSH)</term>
<term>Drosophila Proteins (genetics)</term>
<term>Drosophila Proteins (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Interleukins (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Myeloid Differentiation Factor 88 (genetics)</term>
<term>Myeloid Differentiation Factor 88 (metabolism)</term>
<term>Protein Domains (genetics)</term>
<term>Protein Domains (physiology)</term>
<term>Protein Structure, Secondary (MeSH)</term>
<term>Receptors, Interleukin-1 (genetics)</term>
<term>Receptors, Interleukin-1 (metabolism)</term>
<term>Signal Transduction (genetics)</term>
<term>Signal Transduction (physiology)</term>
<term>Toll-Like Receptors (genetics)</term>
<term>Toll-Like Receptors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Bases de données génétiques (MeSH)</term>
<term>Domaines protéiques (génétique)</term>
<term>Domaines protéiques (physiologie)</term>
<term>Facteur de différenciation myéloïde-88 (génétique)</term>
<term>Facteur de différenciation myéloïde-88 (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Interleukines (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Protéines adaptatrices de la transduction du signal (génétique)</term>
<term>Protéines adaptatrices de la transduction du signal (métabolisme)</term>
<term>Protéines de Drosophila (génétique)</term>
<term>Protéines de Drosophila (métabolisme)</term>
<term>Récepteurs de type Toll (génétique)</term>
<term>Récepteurs de type Toll (métabolisme)</term>
<term>Récepteurs à l'interleukine-1 (génétique)</term>
<term>Récepteurs à l'interleukine-1 (métabolisme)</term>
<term>Structure secondaire des protéines (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Théorème de Bayes (MeSH)</term>
<term>Transduction du signal (génétique)</term>
<term>Transduction du signal (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing</term>
<term>Drosophila Proteins</term>
<term>Myeloid Differentiation Factor 88</term>
<term>Receptors, Interleukin-1</term>
<term>Toll-Like Receptors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing</term>
<term>Drosophila Proteins</term>
<term>Myeloid Differentiation Factor 88</term>
<term>Receptors, Interleukin-1</term>
<term>Toll-Like Receptors</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Protein Domains</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Domaines protéiques</term>
<term>Facteur de différenciation myéloïde-88</term>
<term>Protéines adaptatrices de la transduction du signal</term>
<term>Protéines de Drosophila</term>
<term>Récepteurs de type Toll</term>
<term>Récepteurs à l'interleukine-1</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteur de différenciation myéloïde-88</term>
<term>Protéines adaptatrices de la transduction du signal</term>
<term>Protéines de Drosophila</term>
<term>Récepteurs de type Toll</term>
<term>Récepteurs à l'interleukine-1</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Domaines protéiques</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Protein Domains</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Bayes Theorem</term>
<term>Databases, Genetic</term>
<term>Humans</term>
<term>Interleukins</term>
<term>Models, Molecular</term>
<term>Protein Structure, Secondary</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Bases de données génétiques</term>
<term>Humains</term>
<term>Interleukines</term>
<term>Modèles moléculaires</term>
<term>Structure secondaire des protéines</term>
<term>Séquence d'acides aminés</term>
<term>Théorème de Bayes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Toll-interleukin-1R resistance (TIR) domains are ubiquitously present in all forms of cellular life. They are most commonly found in signaling proteins, as units responsible for signal-dependent formation of protein complexes that enable amplification and spatial propagation of the signal. A less common function of TIR domains is their ability to catalyze nicotinamide adenine dinucleotide degradation. This survey analyzes 26,414 TIR domains, automatically classified based on group-specific sequence patterns presumably determining biological function, using a statistical approach termed Bayesian partitioning with pattern selection (BPPS). We examine these groups and patterns in the light of available structures and biochemical analyses. Proteins within each of thirteen eukaryotic groups (10 metazoans and 3 plants) typically appear to perform similar functions, whereas proteins within each prokaryotic group typically exhibit diverse domain architectures, suggesting divergent functions. Groups are often uniquely characterized by structural fold variations associated with group-specific sequence patterns and by herein identified sequence motifs defining TIR domain functional divergence. For example, BPPS identifies, in helices C and D of TIRAP and MyD88 orthologs, conserved surface-exposed residues apparently responsible for specificity of TIR domain interactions. In addition, BPPS clarifies the functional significance of the previously described Box 2 and Box 3 motifs, each of which is a part of a larger, group-specific block of conserved, intramolecularly interacting residues.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32002590</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>05</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1211</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>72</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2020</Year>
<Month>04</Month>
</PubDate>
</JournalIssue>
<Title>Immunogenetics</Title>
<ISOAbbreviation>Immunogenetics</ISOAbbreviation>
</Journal>
<ArticleTitle>A survey of TIR domain sequence and structure divergence.</ArticleTitle>
<Pagination>
<MedlinePgn>181-203</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00251-020-01157-7</ELocationID>
<Abstract>
<AbstractText>Toll-interleukin-1R resistance (TIR) domains are ubiquitously present in all forms of cellular life. They are most commonly found in signaling proteins, as units responsible for signal-dependent formation of protein complexes that enable amplification and spatial propagation of the signal. A less common function of TIR domains is their ability to catalyze nicotinamide adenine dinucleotide degradation. This survey analyzes 26,414 TIR domains, automatically classified based on group-specific sequence patterns presumably determining biological function, using a statistical approach termed Bayesian partitioning with pattern selection (BPPS). We examine these groups and patterns in the light of available structures and biochemical analyses. Proteins within each of thirteen eukaryotic groups (10 metazoans and 3 plants) typically appear to perform similar functions, whereas proteins within each prokaryotic group typically exhibit diverse domain architectures, suggesting divergent functions. Groups are often uniquely characterized by structural fold variations associated with group-specific sequence patterns and by herein identified sequence motifs defining TIR domain functional divergence. For example, BPPS identifies, in helices C and D of TIRAP and MyD88 orthologs, conserved surface-exposed residues apparently responsible for specificity of TIR domain interactions. In addition, BPPS clarifies the functional significance of the previously described Box 2 and Box 3 motifs, each of which is a part of a larger, group-specific block of conserved, intramolecularly interacting residues.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Toshchakov</LastName>
<ForeName>Vladimir Y</ForeName>
<Initials>VY</Initials>
<Identifier Source="ORCID">0000-0002-7942-2294</Identifier>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. vtoshchakov@som.umaryland.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Neuwald</LastName>
<ForeName>Andrew F</ForeName>
<Initials>AF</Initials>
<Identifier Source="ORCID">0000-0002-0086-5755</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI082299</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01GM125878</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>01</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Immunogenetics</MedlineTA>
<NlmUniqueID>0420404</NlmUniqueID>
<ISSNLinking>0093-7711</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D048868">Adaptor Proteins, Signal Transducing</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029721">Drosophila Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007378">Interleukins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D053594">Myeloid Differentiation Factor 88</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017472">Receptors, Interleukin-1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C068721">Tl protein, Drosophila</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051193">Toll-Like Receptors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D048868" MajorTopicYN="N">Adaptor Proteins, Signal Transducing</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001499" MajorTopicYN="N">Bayes Theorem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030541" MajorTopicYN="N">Databases, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029721" MajorTopicYN="N">Drosophila Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007378" MajorTopicYN="N">Interleukins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053594" MajorTopicYN="N">Myeloid Differentiation Factor 88</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072417" MajorTopicYN="N">Protein Domains</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017433" MajorTopicYN="N">Protein Structure, Secondary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017472" MajorTopicYN="N">Receptors, Interleukin-1</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051193" MajorTopicYN="N">Toll-Like Receptors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Bayesian partitioning with pattern selection</Keyword>
<Keyword MajorTopicYN="Y">Protein function</Keyword>
<Keyword MajorTopicYN="Y">Protein structure</Keyword>
<Keyword MajorTopicYN="Y">TIR domains</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>01</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32002590</ArticleId>
<ArticleId IdType="doi">10.1007/s00251-020-01157-7</ArticleId>
<ArticleId IdType="pii">10.1007/s00251-020-01157-7</ArticleId>
<ArticleId IdType="pmc">PMC7075850</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Neuron. 2017 Mar 22;93(6):1334-1343.e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28334607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2009 Sep;17(9):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19716705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2014 Aug;14(8):546-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25060580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2019 Aug 23;365(6455):799-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31439793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Jan 4;46(D1):D493-D496</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29040681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2018 Aug 1;201(3):995-1006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29914886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Jul 3;114(27):7055-7060</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28630328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2014 Sep 23;426(19):3305-3313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25088687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(4):e34202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22485159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jul 27;337(6093):481-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22678360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Apoptosis. 2015 Feb;20(2):250-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25451009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):14879-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21873236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):1063-1068</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28096345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Jul 13;287(29):24641-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22648407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2013 Dec 12;39(6):1003-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24332029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1998 Dec;23(12):454-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9868361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Jan 20;95(2):588-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9435236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stat Appl Genet Mol Biol. 2014 Aug;13(4):497-517</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24988248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1991 May 30;351(6325):355-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1851964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Apr 18;300(5618):445-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12702867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2019 Aug 23;365(6455):793-799</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31439792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 1997 Dec;18(15):2714-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9504803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2009;60:379-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Jan 9;505(7482):174-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24402279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):19908-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24255114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2012 Jan 25;12(2):89-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22273771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2012 May 29;5(226):re3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22649099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Nov 2;408(6808):111-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11081518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Jan 10;289(2):669-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24275656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2016 Dec 2;481(1-2):146-152</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27818198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10260-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19506249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Apr;13(4):673-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12671004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2013 Aug 14;33(33):13569-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23946415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Apr 18;344(6181):299-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24744375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):19036-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24194546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2001 Jun 1;74(2):234-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11386760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fish Shellfish Immunol. 2011 Dec;31(6):887-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21846503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 Nov 2;17(1):850</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27806695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Sep 6;413(6851):78-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11544529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2012 Apr 20;36(4):612-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22464168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2001 Sep;2(9):835-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11526399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 1997 Dec;7(6):837-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9430229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Oct 11;113(41):E6271-E6280</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27671644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2010 Jan;11(1):47-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19997068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2011 May 27;34(5):637-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21616434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Dev. 2010 Sep-Oct;12(5):519-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20883219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Feb 18;275(7):4670-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10671496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2002 Dec 15;169(12):6668-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12471095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Comp Immunol. 2014 Feb;42(2):286-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24090967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6985-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23569230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):E2046-E2052</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28159890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9577-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15976025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12654-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11606776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2007 Apr 1;178(7):4517-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17372010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2010 Jan;19(1):155-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19845004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1994 Sep 23;78(6):1101-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7923359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Microbiol Immunol. 2013 Feb;202(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22772799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Aug 7;284(32):21386-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19535337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Immunol. 2003 Jun;24(6):286-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12810098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Jan 10;289(2):654-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24265315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2018 Jul 02;9:1523</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30034391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2016 Jul 1;197(1):11-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27317733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 1;25(15):1869-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 May 2;283(18):11861-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18332149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Mar;24(3):792-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17190971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1996 Sep 20;86(6):973-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8808632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2011 Mar 17;9(3):200-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21402359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Leukoc Biol. 2019 Feb;105(2):363-375</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30517972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2010 Aug;11(8):539-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20585331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Aug 8;114(32):E6480-E6489</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28739909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Comp Immunol. 2011 Apr;35(4):461-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21110998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2003 Feb;4(2):161-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12539043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):2754-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11880627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Immunol. 2013 Dec 15;25(6):394-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24246227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Innate Immun. 2020 Jan;26(1):35-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31955621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Comp Immunol. 2009 Apr;33(4):559-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19013190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2014 Dec;14(12):821-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25359439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2016 Feb;1863(2):244-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26592460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2008 Apr;14(4):399-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18327267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Dec 08;7:1850</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28008335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1997 Jul 24;388(6640):394-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9237759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2011 Apr 15;186(8):4819-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21402890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1985 Oct;42(3):779-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3931918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 Mar 20;9(1):1156</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29559685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jul 18;103(29):10961-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16832055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2017 Sep;24(9):743-751</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28759049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 1998 Aug;2(2):253-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9734363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 1996 Dec 5;13(11):2467-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8957090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jul 23;279(30):31664-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2015 Jan;16(1):18-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25531225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2014 Sep 23;5:459</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25295041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fish Shellfish Immunol. 2013 Dec;35(6):1703-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24036335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2018 Feb 5;28(3):421-430.e4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29395922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2014 Mar;21(3):269-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24494927</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Toshchakov, Vladimir Y" sort="Toshchakov, Vladimir Y" uniqKey="Toshchakov V" first="Vladimir Y" last="Toshchakov">Vladimir Y. Toshchakov</name>
</noRegion>
<name sortKey="Neuwald, Andrew F" sort="Neuwald, Andrew F" uniqKey="Neuwald A" first="Andrew F" last="Neuwald">Andrew F. Neuwald</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantImRecepV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000222 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000222 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantImRecepV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32002590
   |texte=   A survey of TIR domain sequence and structure divergence.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32002590" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantImRecepV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:33:18 2020. Site generation: Sat Nov 21 12:33:47 2020